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We adopt a canonical approach to describe the stochastic motion of relativistic belt electrons and

their scattering into the loss cone by nonlinear EMIC waves. The estimated rate of scattering is

sufficient to account for the rate and intensity of bursty electron precipitation. This interaction is

shown to result in particle scattering into the loss cone, forming �10 s microbursts of

precipitating electrons. These dynamics can account for the statistical correlations between

processes of energization, pitch angle scattering, and relativistic electron precipitation events,

that are manifested on large temporal scales of the order of the diffusion time �tens of minutes.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4892185]

I. INTRODUCTION

Proton-mode whistlers, or electromagnetic ion-cyclotron

(EMIC) waves, are frequently observed near the vicinity of

the equatorial plasmapause, where they are thought to be

driven by a ring current anisotropy.1,2 The waves exhibit a

periodic structure of a sequence of discrete wave packets

with a repetition period of 10 s at frequency �1.5–2 Hz.

Direct observations show that EMIC waves propagate along

the direction of the ambient magnetic field, and broadband

wave amplitudes can reach �1–10 nT.3–7

Pitch angle scattering caused by resonant interaction

with EMIC waves is thought to be the most likely mecha-

nism for relativistic electron precipitation (REP) events, and

observations of REP events consistent with this mechanism

have been made,8–10 and modelled as quasi-linear diffu-

sion.11 A review of the observations is given by Millan and

Thorne.12 A number of investigators have addressed the

theory and simulation of nonlinear EMIC wave-particle

interactions, e.g., Albert and Bortnik,13 An et al.14 Of these,

the approach of An et al. is quite promising. Using a two-

wave model, the authors study the impact of wave amplitude

modulation on the interaction of electrons and EMIC waves.

Though, quoting An et al.,14 “this is the first step toward

understanding the interaction between electrons and a realis-

tic EMIC wave packet,” the approach is reasonable because

it allows to determine the conditions for which phases are

randomized and as a consequence, a kinetic description of

the motion can be applied.15 We will study stochastic motion

of relativistic electrons driven by nonlinear EMIC waves.

We show the dynamics are ergodic with phase mixing, so

that the evolution of spectra and observable quantities obeys

a kinetic equation. This gives a way to calculate the rates of

energization and particle scattering, and evaluate REP

events.

We consider the dynamics of relativistic electrons reso-

nantly interacting with nonlinear EMIC waves. In Sec. II, we

derive the equations of motion and find the conditions under

which the motion becomes chaotic. The statistical aspects of

the dynamics are treated by analytical and numerical means

in Sec. III. The effect of external noise in modifying the

motion is also examined. In Sec. IV, we deal with the prob-

lem of pitch angle scattering and REP events. The principal

conclusions are given in Sec. V.

II. PARTICLE MOTION

We will consider the resonant interaction of relativistic

electrons with field-aligned EMIC waves in terms of the ca-

nonical approach. According to Khazanov et al.,16 the prob-

lem can be put in the form of a Hamiltonian

Hðz; pz; h; I; tÞ ¼ H0ðpz; IÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxBI

p
H�1

0 � Bwðz; h; tÞ=kz;

(1)

H0ðpz; IÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z þ 2mxBI
q

; xB ¼ B=m; (2)

where xB is the gyrofrequency. The Hamiltonian is given by

two pairs of canonical variables, (pz,z), (h,I) on a smooth

manifold M. M is the usual 2-D phase space: a point in M is

given by 4-tuple of real numbers. We have employed here,

and throughout this paper, the system of units in which the

speed of light c¼ 1 and the electron charge jej ¼ 1, and we

have chosen a Cartesian spatial coordinate system whose z
axis is directed along the external magnetic field B. The

action-angle (I,h) pair is immediately related with the gyro-

motion and magnetic moment, and any fixed value of H0,

H0¼E, determines the particle energy E, Bw(z,h,t) is the

wave magnetic field

Bw ¼ Bwðet; ezÞ cos w; w ¼ kzzþ sh� xt; (3)

with slowly varying amplitude Bwðet; ezÞ, and w is the phase

of the particle in the wave. The smooth periodic function

Bwðet; ezÞ describes the repetitive structure of the wave enve-

lope and satisfies the conditionsa)Electronic mail: george.v.khazanov@nasa.gov
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Bwðtþ T; zþ LÞ ¼ Bwðt; zÞ; (4)

e ¼ @Bw

@t
� 1

xBw
� xTð Þ�1

;
@Bw

@z
� 1

kBw
� kLð Þ�1

: (5)

Here, e is a small parameter, the ratio of the oscillation pe-

riod 2p=x (or 2p=k) to the time (space) scale (T, L) over

which the envelope varies. So, we assume that the ambient

magnetic field varies slowly over one wavelength

� 1
Bkz
@B=@z ð� e2Þ, and that the magnitude of the wave field

is sufficiently small, Bw=Bð� e). Resonant wave-particle

interaction occurs whenever the resonance condition

_w ¼ kz _z þ s _h � x ¼ 0; s ¼ �1; (6)

is met. Near resonance, the variables w and pz vary slowly

compared to time period of oscillations, and the following

conditions of the adiabatic approach are valid

_w � xw; _I � xI; _pz � xpz (7)

These conditions allow us to write equations of motion asso-

ciated with (1) as

_pz ¼ kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxBI

p
H�1

0 � ðBwðet; zÞ=kzÞ sin w; (8)

_I ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxBI

p
H�1

0 � ðBwðet; zÞ=kzÞ sin w; (9)

_z ¼ pz=H0; _h ¼ xBm=H0: (10)

These equations retain only the leading terms, all of the per-

turbation terms average to zero, and the small parameter e
automatically keeps track of the ordering. It stands to reason

that the phase flow (8)–(10) conserves the invariant of

motion

�spz þ kzI ¼ const:; (11)

where const. is a constant independent of time given by the

initial resonance condition. Proton-mode whistlers propagate

at frequencies below the proton gyrofrequency and can inter-

act with relativistic electrons through the anomalous electron

gyroresonance, kðp=EÞ ¼ xBðm=EÞ. This allows us to evalu-

ate the value of pz at the resonance with the principal mode

as

pr=m ¼ ðxB=xÞvp; (12)

where vp is the phase velocity of wave, which is close to the

Alfven speed. For the majority of EMIC wave events, the

resonant energy Er for electrons was found to be about

2 MeV,12 so we will take pr¼Er with a sufficient accuracy,

Er � pr=Er � m2=2p2
r . In view of (12), we write the invariant

of motion (11) as

pz þ
2mxBI

2pr
¼ pr; pz 2 m; prð Þ: (13)

This invariant leads to the restriction of dynamics onto a

reduced phase space, acceptable coordinates of which are the

canonically conjugated pair ðw; uÞ, where w is the phase

variable and u is a new action variable. Even with these sim-

plifications, we can reduce this motion to quadratures only if

the perturbation has a trivial form of monochromatic wave

propagating along the direction of the ambient magnetic

field. In the general case, this nonautonomous nonlinear dy-

namical system is non-integrable, and the measure of its reg-

ular motion is equal to zero.

Consider the extended phase space on which the peri-

odic Hamiltonian is given. In this case, it is sufficient to

describe the motion in some time interval (t0, t0þ T), such as

g1ðw0; u0Þ ¼ ðw1; u1Þ, where ðw0; u0Þ is the initial state of

the system and g1 is the map at one period.17 In this way, we

can define a map gn¼ (g1)n of the phase plane onto itself.

The map preserves the phase volume in virtue of Liouville’s

theorem.

For the Hamiltonian (1) and its invariant of motion, a

standard representation can be written in the form of a set of

nonlinear difference equations16

unþ1 ¼ un þ Q sin wn;

wnþ1 ¼ wn þ Fðunþ1Þ mod 2p; (14)

where un and wn are taken at t¼ nT, Q is the control parame-

ter that defines the intensity of wave-particle interaction, and

the function F(unþ1) describes the shift of phase acquired by

a particle, with n 2 Z, where Z is the set of all integers.

In order to find the explicit form of these equations, we

need a way to define the wave form of the envelope of the

nonlinear EMIC wave. There exist two equivalent represen-

tations, the first of which describes these waveforms by solu-

tions of nonlinear wave equations, usually the nonlinear

Schr€odinger equation, the applicability of which to Alfven,

EMIC, and whistler waves is well-grounded.18,19 Another

typical representation is to write the wave field in the form

of a nonlinear wave packet20

Bwðt; zÞ ¼ ðBw
0 =

ffiffiffiffiffiffiffiffiffi
DkL
p

Þ
X
n2Z

dðz=L� nÞ cos w; L ¼ vAT;

(15)

where Bw
0 is the peak value of wave amplitude, Dk is the

width of wave packet, and the relation
P

n2Zeinx

¼ 2p
P

n2Zdðx� 2pnÞ, where dð�Þ is the Dirac delta function,

has been used in writing (15). The equivalence of these rep-

resentations in describing wave-particle resonance interac-

tion has been shown by the authors Khazanov et al.16

To qualitatively understand the behavior the system, we

first investigate the dynamics of particles in the single mode

of nonlinear wave. Assuming that the wave perturbation is

sufficiently small, so that the deviation of the pz-momentum

of particle from its resonance value makes a small change of

the phase of particle in the wave field, we write Eqs. (6) and

(8) as follows

_pz ¼ �xf ðxf=kzÞpr sin w; _w ¼ kzðpz � prÞ=Er; (16)

putting the values of quantities at the resonance,

kzðp=EÞr ¼ xBm=Er. Equations (16) describe the modulated

oscillation of particle whose bounce-frequency is given by

082901-2 Khazanov et al. Phys. Plasmas 21, 082901 (2014)
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xf ¼ kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ub=

ffiffiffiffiffiffiffiffiffi
DkL
pq

; u¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxBI

p
=pr; b¼ Bw

0 =B: (17)

Following the approach of Chirikov,21 we use the general

notions of overlapping resonances to predict the stochastic

nature of the motion. In this approach, the overlap of

resonances is closely associated with the parametric reso-

nance, xf ’ dx, between the bounce-frequency and the dif-

ference frequency in wave packet. The importance of the

bounce resonance has been noted by Khazanov et al.16 As

indicated by (6) and (12), the frequency spacing in the wave

dx ¼ dkðp=EÞr; dk ’ 1=L. It stands to reason, the transition

from regular motion to stochastic one is possible only if the

condition

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=DxÞxTb2

p
xT � 1 (18)

is satisfied. This result is the consequence of the bounce

resonance.

Our interest now is to inspect the motion of relativistic

electrons driven by nonlinear EMIC waves. Substituting (15)

into (10) and integrating the resulting equation over the

space scale L yields a map in the standard form of a closed

pair of nonlinear difference equations

gn :
unþ1 ¼ un þ Q sin wn;

wnþ1 ¼ wn þ ðxTu2
nþ1=2Þ=ð1� u2

nþ1=2Þ mod 2p;
(19)

where the u-variable and the control parameter Q are given

by

u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxBI

p
=pr; Q¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

Dx
xTb2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
x2PT
p

; b¼ Bw
0 =B;

(20)

and P ¼ b2=Dx is the normalized wave power, Dx is the

width of frequency spectrum. These equations, the map gn,

describe the change in the transverse momentum of particle

in multiple encounters with the nonlinear wave packet. In

deriving gn, we have used the invariant of motion, and the

first of Hamilton’s equations (10), dt¼ dz(E/pz). The equa-

tions (19) are valid in a range of u; u � ub, bounded by the

invariant of motion (13),

ub ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� m=prÞ

p
; ub ¼

ffiffiffiffiffiffiffiffi
3=2

p
; (21)

where ub is the upper bound of u-values. We have integrated

these equations numerically with an initial condition, using

typical parameters for wave-particle interaction, namely,

xB=2p ¼ 8	 103 Hz, B¼ 300 nT, b ¼ ð1� 3Þ 	 10�2,

T¼ 40 s, and Dx=x¼ 0.25, vA ¼ 3	 105 m=s, and Q� 0.1.

Fig. 1 illustrates the type of dynamics.

III. STATISTICAL PROPERTIES OF THE DYNAMICS

Let us consider a pair (M,gn), where M is a smooth

manifold. It is known17 that the geometrical structure of M
and dynamics of gn on M are intimately closed. Indeed, while

all smooth curves have topological dimension one, a dimen-

sion of phase curve constructed by gn approximates two. In

such cases, we speak of the stochastic dynamics on the

strange attractor (SA). In order to see it, one examines the

local topology of M. Denote by

J ¼
@ unþ1;wnþ1

� �
@ un;wnð Þ (22)

the Jacobi matrix of the map, the eigenvalues of which are

given by the relations

det J ¼ k1 � k2 ¼ 1;

tr J ¼ k1 þ k2 ¼ 2þ xTQu=ð1� u2=2Þ2; (23)

where det J and tr J denote the determinant and the trace of

the matrix, respectively. The Jacobian of (22) is equal to

one, and therefore ðw; uÞ is the canonical pair of variables of

area-preserving map gn. According to Arnold,17 the

condition

jtr J j � 1 � 2 (24)

implies that phase space has topological structure of hyper-

bolic type, so that any phase trajectory near a hyperbolic

point diverges from it. This property is closely related to the

local instability of phase trajectories.20 To show it, we study

the behavior of the system near the lower boundary, ua, of u-

values in the vicinity of fixed points given by the equation,

sin w0 ¼ 0. In this case, the map gn reduces to the well-

known circle map22

wnþ1 ¼ wn þ xTQua sin wn mod 2p; (25)

FIG. 1. Single phase trajectory of length 2	 104 for the map gn with (a)

Q¼ 0.1 and (b) Q¼ 0.04.
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where we put u2
a=2� 1 in accordance with numerical

results. The dynamics of the map are stochastic provided the

multiplicator of the map is positive

���� dwnþ1

dwn

� 1

���� ¼ xTQua � 1ð Þ: (26)

This process, as we will see later on, leads to the decay of

phase correlations and to phase mixing. Then, we apply the

topological condition (24) to the relation (23) to obtain an

expression

ua ¼ 1=xTQ; (27)

that agrees with the two qualitative estimates (26) and (18).

Expression (27) determines the lower bound of the set of u-

values, which is well confirmed numerically. Figure 1 shows

that all points of phase trajectory belong to a compact set,

u 2 ðua; ubÞ and w 2 ð�p; pÞ; that is, any phase trajectory is

bounded, though it diverges locally. The combination of

these properties, global stability and local instability, brings

about chaotic dynamics. For a finite system phase space,

phase trajectories cannot diverge more than a characteristic

size of the phase space due to local instabilities. Denote by

dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwn � w0nÞ

2 þ ðun � u0nÞ
2

q
; (28)

the distance between two points in phase space belonging to

nearby trajectories at a moment of time n. The evolution of

this quantity in time is shown in Fig. 2. We can also describe

this process by means of Liapunov exponents. Applying top-

ological condition (24) to (23) yields lnk1 ¼ ð3þ
ffiffiffi
5
p
Þ=2.

The positive Liapunov exponent characterizes the mean rate

of local instability, and, as a consequence, the rate of the loss

of information about initial conditions, the Kolmogorov en-

tropy hK, hK ¼ lnk1 and the correlation time, sc � 1=hK . In

this way, the relation establishes the interdependence

between the statistical characteristic (hK), and the properly

dynamical one (lnk1). Note that any integrable Hamiltonian

system has all Lyapunov exponents equal to zero, and its tra-

jectory is completely determined by initial conditions. To

examine its statistical properties, we define a related quan-

tity, the correlation function C(i),

CðiÞ ¼ ð1=NÞ
X
n2N

wðnÞwðnþ iÞ;

where i is the step lag and N is the total number of steps of

iterations. Numeral investigation of the C(i) gives the results

shown in Fig. 3. Figure 3 shows a complete decorrelation of

the motion in one mapping period. Note that the

Fokker–Planck–Kolmogorov (FPK) description is valid only

when the function C(i) falls off rapidly with the number of

mapping iterations. Another important characteristic is frac-

tal dimension, df, which is related to the spectrum of

Liapunov exponents as

df ¼ 1� lnk1=lnk2; df ¼ 2: (29)

This df is equal to the dimension of phase plane; that is, the

phase trajectory evenly fills all accessible phase space. This

means that the probability density of states tends to the

invariant distribution

qðw; uÞ ¼ 1=2pðub � uaÞ: (30)

The motion on any SA is random over a wide range of Q due

to the global stability of the SA, on which all means (observ-

ables) are stable independent of any (reasonable) initial con-

ditions. All this taken together implies that the present

system belongs to the class of K-systems.20 The (M,gn) sys-

tem has been shown to have strong stochastic properties.

Once the phase variable is, in fact, d-correlated, the evolu-

tion of the coarse-graining function

w u; tð Þ ¼
1

2p

ðp

�p
q w; u; tð Þdw (31)

obeys the FPK equation for the u-variable alone. In this case,

the distribution function, or rather, the probability density

w(u;t), is governed by the FPK equation in the standard form

@w u; tð Þ
@t

¼ 1

2

@

@u
Du
@w

@u
: (32)

Here, Du ¼ hðunþ1 � unÞ2i=T ¼ Q2=2T is the conventional

coefficient of diffusion in phase space

Du ¼
x

2Dx
xb2 ¼ 1

2
x2P; (33)

FIG. 2. Development of local instability.

FIG. 3. Correlation function C(i) on i (1) without noise and (2) with noise.

Q¼ 0.1.
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where h�i denotes the phase average and T is the timescale of

the problem. The function w(u,t) is a differentiable function

that is normalized to 1ð
u2fUg

wðu; tÞdu ¼ 1; (34)

where {U} is a range of the variable u.

For the function w(u) restricted to [ua, ub], the invariant

distribution can be given by

wðuÞ ¼ ðub � uaÞ�1: (35)

The characteristic time for redistribution of u over the spec-

trum is found to be

td ’ 2u2
b=Du; (36)

which yields td � 2 � 103 s.

Let us consider the impact of bouncing on the particle

motion. In particular, chaotic motion of particles driven by

monochromatic Alfven, or EMIC, waves can arise only as a

result of the bounce-effect. This has been shown by Ho

et al.23 However, this effect is relatively small and leads to

only minor variations of observable quantities near the princi-

pal resonance. Consider this effect in detail. Let the condition

of wave-particle resonance, p=m ¼ xB=kzc, be valid at a point

with the coordinate z¼ z0 along the line of force. One can

examine the particle motion in the vicinity of z0, taking into

account the bounce force, �@H0=@z ¼ �ðpt=2EBÞ@B=@z;
p2

t ¼ 2mxBI, and assuming a parabolic approximation of

Earth’s magnetic field, BðzÞ ¼ B0ð1þ z2=2l2Þ, where l is the

spatial scale for the inhomogeneities. Then the equations of

motion are

_pz ¼ �kbðpt=EÞpr sin w� ðp2
t =2El2Þðz� z0Þ;

_w ¼ kzðpz � prÞ=Er; (37)

which are identical to (16), and take into account the

bounce-effect. One can then write these equations in an

equivalent form

w
::

þ x2
f sin wþ x2

bw ¼ 0; (38)

x2
f ¼ k2ðpt=EÞb; x2

b ¼ ðpt=EÞ2=2l2; (39)

where xf is the frequency of phase oscillation, xb is the

bounce frequency, and the initial phase is set to be zero for

simplicity. Thus, we learn that the ratio

x2
b=x

2
f ¼ ðpt=EÞe2=b; (40)

where e¼ 1=kl, under the resonance EMIC wave-electron

interaction, is typically small, no more than 10�5.

According to (40), the bounce effect we speak of is neg-

ligible and can be considered as a perturbation of the princi-

pal motion. As a result of this, the strongly nonlinear

solution of (38) is given by

Dp=E ¼ 62ðxf=kcÞ cosðw=2Þ ¼ 62ðxf =kcÞcosh�1ðxf tÞ
(41)

with its peak value Dp=E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpt=EÞb

p
ð� 10�2Þ.

It should be noted that the effect in the quasilinear

theory is also treated as a pertubation in calculating bounce-

averaging coefficient of diffusion.24

Now, it also seems necessary to treat the dynamics of

particles in the packet of two EMIC waves with slightly dif-

ferent frequencies. Applying the same method, we obtain the

equation

w
::

þ x2
f ð1þ cos dxtÞ sin w ¼ 0; (42)

where dx is the difference frequency of the wave packet.

This is a well-known equation for a parametric excited non-

linear oscillator that describes the parametric resonance at

dx 
 xf .
20 It will cause the overlap of resonances in a

region of phase space given by (41).

In a nonlinear wave packet, the overlapping effect arises

in a global region of phase space, and the dynamics in this

region obey the equation for gn as above. As the bounce-

effect is too small to play an essential role in dynamics, the

term, �@H0=@z, which appears in (8) and describes this

effect, averages to zero in the leading order (to first order

in e), as do all other off-resonant terms. In the following

order, integrating the term with the help of the relation

dt¼ (E/pz)dz over the spatial scale of the envelope, we obtain

Dpz=pr ¼ eðu2=2ÞðL=lÞ: (43)

The term is second order in e and has been dropped in the

first of equations of gn. However, this term can lead to distor-

tions of the phase plane near resonances of the principal fre-

quencies and can be physically associated with the loss of

phase coherence.16 It is easy to see that under these condi-

tions, an additional term proportional to u2 would appear in

the phase advance equation. In our case, the solution of the

equations of motion describes a random trajectory, i.e., a tra-

jectory that can be treated as the realization of a random pro-

cess. It allows us to consider the additional term as an

extrinsic noise.

Fluctuations in Earth’s magnetic field can also modify

the motion of particles. Because the level of fluctuations

(background noise) is relatively small, this effect is exhibited

in the equations of motion only as a fluctuation of the gyro-

frequency xB; xB ! xBð1þ dB=BÞ. It leads to the appear-

ance the term xBTdB=B in phase advance equation.

Assuming that these fluctuations are white noise, we include

the additional terms in the equations of motion to obtain the

closed pair of nonlinear stochastic equations,

unþ1 ¼ un þ Q sin wn;

wnþ1 ¼ wn þ nn þ ðxTu2
nþ1=2Þ=ð1� u2

nþ1=2Þ mod 2p;

(44)

where the term nn plays the role of a weak stochastic force.

The random variable n ¼ db=b has a Gaussian probability

density

p nð Þ ¼ 1ffiffiffiffiffiffi
2p
p

r
exp �n2=2r2
� �

;
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the mean-square value of which is hnnnn0 i ¼ r2dnn0 , where r2

is the intensity of noise, and d is the Kronecker delta.

From Figure 3, we learn that the term nn in the system

acts without significantly changing its statistical properties.

The effect of extrinsic noise manifests itself in the FPK equa-

tion as an additional term in the coefficient of diffusion,

D=Du ¼ 1r2=Q2. This effect does not significantly affect dif-

fusion induced by stochasticity, due to the global stability of

the SA.

IV. PITCH ANGLE SCATTERING AND REP EVENTS

To find what energetic states the particle can be in, we

use the invariant of motion to reveal the relationship

u2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1
p

; (45)

where e¼E=Er is the normalized particle energy.

Thus, the measure-preserving transformation w(e)

de¼w(u)du, where w(e) is the density of states in energy

space, determines this problem completely, subject to appro-

priate boundary conditions. The corresponding solution for

w(e) is found to be

wðeÞ ¼ wðuÞe=
ffiffiffi
2
p
ðe2 � 1Þ3=4; e 2 ðea; ebÞ; e ¼ E=Er:

(46)

Here, ea ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u4

a=4
p

is the minimal value of particle

energy, the term u4
a=4 is caused by the wave-particle interac-

tion, and eb¼ 5/4, Eb¼ 2.5 MeV is the upper boundary of

energy spectrum. Finally, by means of (46), we find the

mean energy
ffiffiffiffiffiffiffiffiffi
hE2i

p

 2:1 MeV. Then, with the help of (45),

we convert equations (19) into the map

enþ1 ¼ en þ Q
ffiffiffi
2
p
ðe2

n � 1Þ3=4=en sin wn;

wnþ1 ¼ wn � xT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

nþ1 � 1

q
= 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

nþ1 � 1

q� �
mod 2p

(47)

to compare result (46) to the values of we obtained numeri-

cally as a function of e. The prediction (46) is in reasonable

agreement with the numerically determined spectrum from

the map (47) in the range of interest, as shown in Fig. 4. This

behavior of we is due to the rate of diffusion in e,

De ¼ const:ðe2–1Þ3=2=e2, which leads to a distribution in the

narrow range of energies �2–2.5 MeV having a sharp maxi-

mum at the value close to Er(2 MeV). Taking account of

relation (45), and performing once more the transformation

w(e)¼w(u)du/de in (31), we derive the following FPK equa-

tion for w(e):

@w e; tð Þ
@t

¼ @

@e
J e; tð Þ; J ¼ 1

2
De

@

@e
þ 1

2

@De

@e

� �
w; (48)

which describes the evolution of w(e). Putting J¼ 0 at the

boundary energy spectrum, we obtain the steady-state solu-

tion to the equation, which coincides with (46).

Now, we consider how these dynamics are manifested

in REP events due to pitch angle scattering. Considering the

invariant of motion (20), one defines the pitch angle by

tan v ¼ u=ð1� u2=2Þ: (49)

Subject to vc � 1, where vc is the loss cone angle, (49)

yields vc 
 uc. So, EMIC waves can scatter into the loss

cone angle only those electrons with energies closed to

Er; E � Ec, where

Ec ¼ Erð1þ u4
c=8Þ: (50)

It helps to find the magnitude of the EMIC wave field at

which REP events will occur

b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx=xðxTÞ3=2v2

c

q
; Bw � 10�3Bð� 100 pTÞ; (51)

where we profit from equations (27) and (20). Carrying

through the transformation wvdv ¼ wudu along with (49),

where wv denotes the function of distribution over v, we

determine the function

wv ¼ wu

sin4vþ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin4v

p� 	2

sin2vþ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin4v

p� 	 � 1

sin2v
(52)

and the coefficient of diffusion in v,

Dv ¼ Du

sin2vþ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin4v

p� 	
sin4vþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin4v

p� 	2

0
B@

1
CA

2

sin4v: (53)

Now, we are capable of interpreting REP events. According

to Millan and Thorne,12 the REP events have a long time

burst structure of �40 min on average with microbursts of

�20 s period, and the energy spectrum of the precipitating

electrons is nearly monoenergetic, with its peak at the reso-

nance energy. We build on this work to find out whether the

EMIC wave-electron interaction results in electron losses.

The functions we and wv given above are exactly what we

want to estimate for the REP events. First, it should be noted

that there exists the relationship w2
vDv ¼ const which is typi-

cal for a dynamical system having a strange attractor.16 In

this case, const¼ 2/td, where td is defined by 36. From this, it

follows that the relaxation time of the pitch angle distribu-

tion to a steady state is to be on the order of td (103 s) the

pitch angle diffusion time. Then, noting that the v-FIG. 4. The energy distribution w(e) with parameter Q¼ 0.1.
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distribution is in fact almost isotropic, we find the time for

diffusion in the loss cone is tc ¼ tdv2
c ð� 10 sÞ at vc � 0:1. At

this rate, the effect is certain to cause a modification of both

the pitch angle and energy spectra due to the loss of resonant

electrons. Then, the competitive process of diffusion in

energy, in turn, must reproduce these distributions, and the

recovery time is on the order of td, the time of diffusion in

pitch angle. In this way, the rate of diffusion in the loss cone

directly determines the duration of REP microburst events,

and the timescale for temporal structure of REP events has

been determined by the recovery time. These results lead to

the inference that there is a strong correlation between the

processes of energization, angle scattering, and REP events.

Consider the system as an ensemble of particles whose

energy and pitch angle spectra are given above. To begin, we

define the differential flux of particles

dNðv; eÞ ¼ Nrvwede cos vwvdX=4p; (54)

where Nr is the resonant particle density and dX is the ele-

ment of solid angle.25 We take into account that the par-

ticle’s velocity v is very close to the speed of light, and

assume that the flux is isotropic along the direction of propa-

gation, dX ¼ 2p sin vdv.

Integrating (54) over the energy spectrum, we find the

integral flux of particles with energies e > er,

F e; vð Þ ¼
1

2
Nrv sin2v

e2 � 1

e2
b � 1

 !1=4

: (55)

Whence we realize that the flux of precipitating electrons is

in fact monoenergetic, which is in agreement with experi-

ments. In keeping with (55), along with (50), we found the

fraction of precipitating electrons,

Jloss=Jtotal ¼
e2

c � 1

e2
b � 1

 !1=4

� v2
c � ucv

2
c � v3

c � 10�3ð Þ: (56)

This result can account for observations that the �1 MeV

population is not swept out by storms because of competition

between losses and accelerating particles.26 Based on

Lorentzen et al.9 and Millan et al.,10 we estimate the average

flux, Fp, of precipitating electrons are �300 cm�2 s�1. In

view of (56), we then write down Fp ¼ Nrcv3
c , from which

we obtain the estimate Nr � 10�5 cm�3, which appears to be

reasonable. Assuming the size of the precipitation region to

be approximately 1015cm2, we evaluate a total of 3	 1022

2 MeV electrons lost during a one day interval, and the

energy input into the atmosphere, to be 6 � 1022 MeV/day. In

parallel, one can estimate the average rate for energy

input in radiation belt (RB) associated with the resonance

electron cyclotron heating to be dE=dt � ðE� ErÞ=td, dE=dt
¼ 5	 10�5 MeV=s. Because there are Np � 3	 1022 precip-

itating electrons, NdE=dt � 1023 MeV=day. The two esti-

mates agree well, and therefore this process is capable of

maintaining the population of RB relativistic electrons. This

demonstrates that the EMIC wave-electron interaction is

among the most likely underlying mechanisms for REP

events. Thus, this mechanism may contribute to electron

losses; because of its selective nature and low heating rate

the contribution to REP events would be relatively small

compared to the losses due to chorus-electron interaction.

Indeed, the total input from this interaction is two orders

smaller than that measured by Imhof and Gaines.27

V. CONCLUSION

We have studied the problem of particle scattering and

bursty precipitation of relativistic electrons related to sto-

chastic dynamics of RB electrons resonantly interacting with

nonlinear EMIC wave. The interaction is shown to result in

particle scattering into the loss cone, forming �10 s micro-

bursts of precipitating electrons. These dynamics can

account for the statistical correlations between the processes

of energization, pitch angle scattering, and REP events that

are manifested on large temporal scales on the order of the

diffusion time (�tens of minutes). Another consequence of

this is the nearly monoenergetic spectrum of precipitating

electrons. The present study shows that the rate of particle

scattering is high enough to support observed fluxes and

demonstrates that our approach can be used to interpret REP

events.
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